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Abstract

Given an n-vertex graph G, let hom(G) denote the size of a largest homogeneous

set in G and let f(G) denote the maximal number of distinct degrees appearing in an

induced subgraph of G. The relationship between these parameters has been well studied

by several researchers over the last 40 years, beginning with Erdős, Faudree and Sós in

the Ramsey regime when hom(G) = O(log n).

Our main result here proves that any n-vertex graph G with hom(G) ≤ n1/2 satisfies

f(G) ≥ 3

√
n2

hom(G)
· n−o(1).

This confirms a conjecture of the authors from a previous work, in which we addressed

the hom(G) ≥ n1/2 regime. Together, these provide the complete extremal relationship

between these parameters (asymptotically), showing that any n-vertex graph G satisfies

max
(
f(G) · hom(G),

√
f(G)3 · hom(G)

)
≥ n1−o(1).

This relationship is tight (up to the n−o(1) term) for all possible values of hom(G), from

Ω(log n) to n, as demonstrated by appropriately generated Erdős–Renyi random graphs.

1 Introduction

The homogeneous number of an n-vertex graph G is defined as

hom(G) := max
U⊂V (G)

{
|U | : G[U ] is a complete or empty graph

}
.
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This parameter is of central interest in Graph Theory and, in particular, in Ramsey Theory.

One version of Ramsey’s theorem [35], which is a cornerstone result in Combinatorics, states

that hom(G) → ∞ as n → ∞. A more quantitative bound, due to Erdős and Szekeres [17],

gives that hom(G) ≥ log2 n/2. Random graphs show that this logarithmic growth is best

possible, as proven by Erdős [16] in one of the earliest applications of the probabilistic method

[4]. However, no explicit constructions of n-vertex graphs with hom(G) = O(log n), also called

Ramsey graphs, are known, despite carrying a $100 Erdős prize. There are several compelling

results proving that graphs produced via certain natural constructive procedures cannot attain

this level of behaviour, along with outstanding conjectures asserting even broader restrictions.

A guiding belief in Ramsey theory is that large graphs with small homogeneous number

must resemble the behaviour of random graphs and, as such, on might view the homogeneous

number of a graph as a measure of quasirandomness. However, while several other similar

measures are known to be equivalent (see for example [39], [10], [38]), this measurement is gen-

erally far weaker. Over time, Erdős and his coauthors made several influential conjectures [11],

asserting that n-vertex Ramsey graphs resemble the typical behaviour of the random graph

G(n, 1/2). The vast majority of these questions have been affirmatively answered: Erdős and

Szemerédi [18] proved that Ramsey graphs have density bounded away from 0 and 1, Shelah

[37] showed they must have exponentially many distinct induced subgraphs, Rödl and Prömel

[32] proved them to be Ω(log n)-universal, Kwan and Sudakov [25], [26] confirmed they share

similar subgraph statistics with G(n, 1/2), while recently Kwan, Sah, Sauermann and Sawhney

[24] have shown that they have an induced subgraph of each size in the interval [0,Ω(n2)].

The focus of this paper is on the relationship between the homogeneous number of a graph

G and its distinct degree number. Given a graph G we let

f(G) := max
{
k ∈ N : G[U ] has k vertices with distinct degrees, for some U ⊂ V (G)

}
.

Understanding the relationship between hom(G) and f(G) was first raised in the Ramsey

regime by Erdős, Faudree and Sós [15]. They conjectured that every n-vertex graph G with

hom(G) = O(log n) satisfies f(G) = Ω(n1/2), a lower bound which was easily observed to

be true for G(n, 1/2) with high probability (whp). This conjecture was proved by Bukh and

Sudakov in an influential paper [9]. They also highlighted that that while Ω(n1/2) is a natural

lower bound for f(G(n, 1/2)), there was no matching upper bound, and they proved instead

that f(G(n, 1/2)) = O(n2/3) whp. Conlon, Morris, Samotij and Saxton [12] later provided

a matching lower bound for the random graph, showing that f(G(n, 1/2)) = Θ(n2/3) whp.

Jenssen, Keevash, Long and Yepremyan later resolved the Ramsey setting in [22], proving that

if G is an n-vertex Ramsey graph then f(G) = Ω(n2/3).

In their paper, Bukh and Sudakov raised the broader question of understanding f(G) based

on hom(G) when hom(G) ≫ log n. In particular, they asked whether hom(G) = o(n) already

guarantees that f(G) ≥ n1/2−o(1). This was proven by Narayanan and Tomon [31], who showed

that in fact f(G) ≥ Ω
(
(n/ hom(G))1/2

)
for all graphs G. In the same paper, they also conjec-
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tured that f(G) ≥ Ω(n/ hom(G)) provided hom(G) ≥ n1/2, which is sharp, as demonstrated by

the hom(G)-partite Turán graph. Later, Jenssen, Keevash, Long and Yepremyan [22] proved

that the Turán graph is indeed extremal for f(G) when hom(G) ≥ n9/10, improving an earlier

bound of hom(G) ≥ Ω(n/ log n) given by Narayanan and Tomon.

In [28] the authors recently resolved the Narayanan-Tomon conjecture, up to a logarithmic

loss, proving an essentially sharp result for hom(G) ≥ n1/2.

Theorem 1.1. There is an absolute constant C > 0 such that the following holds true. Every

n-vertex graph G with hom(G) ≥ n1/2 satisfies

f(G) ≥ n

hom(G)
· log−C n.

Theorem 1.1 thus gives a sharp dependency between these parameters when hom(G) ≥ n1/2.

However, as hom(G) descends beyond the above n1/2 threshold, the lower bound here begins

to fail − this is illustrated by the random graph G := G(n, 1/2), as f(G) = O(n2/3) and

hom(G) = O
(
log n

)
whp. Bearing this example in mind, it is natural to investigate the

behaviour of general random graphs G(n, p) for p ∈ [0, 1]. The authors gave a complete analysis

in Section 6 of [28], which we summarise below. Noting that both hom(G) and f(G) are

preserved under complement, it suffices to restrict to p ≤ 1/2. Then observe:

(i) hom(G(n, p)) = O(p−1 log n) = p−1no(1) whp, by a first moment argument;

(ii) f(G(n, p)) ≤ Õ(np) whp, as f(G) ≤ ∆(G) + 1 for any graph G. For p ≤ n−1/2 it is quite

easy to observe that this bound is sharp, up to a logC n loss1;

(iii) A more subtle upper bound on f(G(n, p)) is obtained as follows. Let H be an induced

subgraph ofG(n, p) which has d vertices of distinct degrees inH; then there is a set S made

of d/4 of these vertices and another vertex setW disjoint to S such that the event ES,W that∣∣eG(n,p)(S,W )− p|S||W |
∣∣ ≥ d2/16 holds. If d ≤ pn/4, by Chernoff’s inequality we obtain:

P(ES,W ) ≤ exp
(
− (d/4)4 · 4/d · (4np)−1

)
= exp

(
− Ω(d3/pn)

)
.

When d = Ω
(

3
√

n2p
)
above, we deduce that

P
(
f(G(n, p)) ≥ d

)
≤ P(some ES,W holds) ≤ (2n)2 · exp

(
− Ω(d3/np)

)
≪ 1.

This gives that f
(
G(n, p)

)
≤ 3
√

n2p · no(1) whp for p ∈ [n−1/2, 1/2].

In [28] the authors proved that the final inequality in (iii) is tight for p ∈ [n−1/2, 1/2] which,

combined with (i), shows that G := G(n, p) satisfies

f(G) =
(
n2p
)1/3 · no(1) = 3

√
n2

hom(G)
· no(1) whp. (1)

1This also follows from Theorem 1.1.
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We also conjectured the right-hand expression in (1) provides a lower bound on f(G) for all

n-vertex graphs G with hom(G) ≤ n1/2, the complementary regime to Theorem 1.1.

Our main theorem here confirms this conjecture.

Theorem 1.2. There is an absolute constant C > 0 such that the following holds true. Every

n-vertex graph G with hom(G) ≤ n1/2 satisfies

f(G) ≥ 3

√
n2

hom(G)
· e−C(logn)2/3 .

We note that by combining Theorems 1.1 and 1.2 this gives the following immediate corollary,

which provides the complete extremal relationship between hom(G) and f(G).

Corollary 1.3. Given an n-vertex graph G, we have

max

(
f(G) · hom(G),

√
f(G)3 · hom(G)

)
≥ n1−o(1).

We highlight that Corollary 1.3 is sharp in both regimes for appropriate random graphs.

Thus the result could be interpreted as saying that random graphs determine the (asymptotic)

extremal relation between hom(G) and f(G). In particular, as mentioned above, the guiding

belief that random graphs indicate the behaviour of graphs with small homogeneous numbers

applies here throughout the entire regime, and appears to be one of the first known results of

this character.

To illustrate another interesting instance of Theorem 1.2, we return to Narayanan and

Tomon’s result [31] that any n-vertex graph with hom(G) = no(1) satisfies f(G) ≥ n1/2−o(1),

which solved a question of Bukh and Sudakov [9]. Theorem 1.2 shows that this condition in

fact produces essentially the same behaviour as was proven in [22] for Ramsey graphs.

Corollary 1.4. Every n-vertex graph G with hom(G) = no(1) satisfies f(G) ≥ n2/3−o(1).

Lastly, we highlight a result of a more general form, which may be of independent interest,

but which will also be helpful when discussing our proof approach. Two vertices u, v of a graph

G are said to have diversity D to a set S ⊂ V (G) if |NS(u)△NS(v)| ≥ D. A subset U ⊂ V (G)

is said to be D-diverse to S if |NS(u1)△NS(u2)| ≥ D for all distinct u1 ̸= u2 ∈ U .

In [9], diversity was identified as a key parameter in analysing f(G), and this connection has

had a large impact on the study of several properties of Ramsey graphs (e.g. degree and size

distributions of induced subgraphs [26],[31],[30],[22]). In particular, in [9] Bukh and Sudakov

proved that if |U | = k and D ≥ k2 above, then f(G) = Ω(k). Using results from [28], one can

show that D ≥ k3/2 suffices to give this conclusion, which turns out to be essentially sharp.
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It is still natural however to suspect this result could be further improved if there was less

pressure on the vertices of S here. For instance, at an extreme, if each vertex in S only appears

in one NS(u) with u ∈ U then it is easy to see that D ≥ k already implies f(G) = Ω(k). Our

next theorem provides a general bound, depending on the pressure vertices from U to S.

Theorem 1.5. Let D ≥ 1 and γ ∈ (0, 1]. Suppose G is a graph with U, S ⊂ V (G), such that:

(i) |NS(u1)△NS(u2)| ≥ D for all distinct u1, u2 ∈ U ;

(ii) |NU(s)| ≤ γ|U | for all s ∈ S.

Then the following relation holds:

f(G) = Ω

(
|U |(

1 +
√
γ|U |3/D2

)
· log2 |U |

)
.

Note in particular that Theorem 1.5 gives f(G) = |U |1−o(1) if either:

• D = Ω
(
|U |3/2

)
and γ = 1 (trivially satisfied), or

• D = Ω(|U |) and γ = |U |−1 – see the example discussed above.

It is also easy to verify that whp the hypothesis of Theorem 1.5 holds for the random graph

G(n, p) when p ∈ [n−1/2, 1/2], with |U | = c(n2p)1/3, D = np/4, S = V (G) and γ = 2p.

Therefore, we recover the essentially sharp bound f(G(n, p)) ≥ |U |1−o(1) = (n2p)1/3−o(1) whp.

Proof overview. Before closing the introduction, we briefly discuss the proof of Theorem 1.2.

In [28] we introduced a general approach to establishing lower bounds on f(G) for a graph G,

which we used to prove Theorem 1.1. Roughly speaking, instead of finding sets U ⊂ W ⊂ V (G)

such that U has many distinct degrees in G[W ], it suffices instead to find such a set U and

a probability distribution D on [0.1, 0.9]V (G) such that certain small-ball like quantities asso-

ciated with U and D are well-controlled (see Section 3 for more details). This resulted in a

more technical task, but with the benefit that it allowed us to blend behaviour from different

neighbourhoods of the graph together to find distinct degrees, and that it was more robust to

an inductive approach, which seems forced upon us in this type of problem.

Our proof of Theorem 1.2 follows the same approach, although several substantial new ideas

are required in the current regime. To begin, observe that if we could find sets U and S with

|U | large, which have diverse neighbourhoods and such that the pressure from U to S is small,

then one could use Theorem 1.5 to prove the theorem, as illustrated in the remark for G(n, p)

above. We thus restrict our attention to graphs G in which one of the conditions (i) or (ii) from

Theorem 1.5 fails for such sets.

Should (i) fail then there are vertices in G whose neighbourhoods cluster or significantly

correlate. We investigate this correlation using the notion of ‘cluster neighbourhood’, which
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allows us to separate vertices which are strongly correlated from others which have a smaller

correlation. Under natural assumptions, we obtain a partial decomposition of a significant

proportion of the graph using cluster neighbourhoods (see Lemma 4.7). We might now hope to

find distinct degrees within each of these clusters by induction (as in [28]), and then combine

them together to obtain U using the weak correlation between the clusters in place of (i) in

Theorem 1.5.

Although this sounds plausible, it results in a new difficulty. Indeed, observe that this

partition into clusters naturally complicates achieving (ii) from Theorem 1.5. Indeed, the

‘pressure parameter’ γ is necessarily forced to be much larger if U has many vertices of a similar

structure. To bypass this new restriction, we instead build our probability distributions D based

on the coarse structure of the cluster neighbourhoods, rather through vertex neighbourhoods

which were used previously. This enables us to work with a measure of pressure based on

the number of clusters, rather than the sought number distinct degrees (as in Theorem 1.5).

We make this connection by exploiting the metric structure of the neighbourhoods (Lemma 3.5),

which will in turn be controlled through our definition of clusters.

Lastly, with these tools in hand, we prove Theorem 1.2 via a delicate inductive argument. In

particular, we were only able to guarantee a low enough level of pressure for the cluster partition

in certain circumstances (see Case 3 of the proof), but luckily a trivial level of pressure (γ = 1)

turned out to be sufficient outside of this (see Case 2 of the proof).

Structure of the paper. In the next section we collect some classic tools from Graph Theory

and Probabilistic Combinatorics, which will be useful in proving our theorem. In the beginning

of Section 3 we recap the key elements of our approach from [28] to lower bounding f(G). We

furthermore provide a crucial lemma that allows us to find distributions which separate large

parts of the graph with relatively low overall pressure. Next, in Section 4 we introduce cluster

neighbourhoods and study their properties. In particular, we prove a central result which helps

us find a partial decomposition of a graph into highly correlated pieces. Finally, in Section 5

we combine these components together to prove Theorem 1.2.

Notation. Given a graph G and u, v ∈ V (G), we write u ∼ v if u and v are adjacent vertices in

G and u ̸∼ v if they are not. The neighbourhood of u is given by NG(u) = {v ∈ V (G) : u ∼ v}
and given S ⊂ V (G) we let NS

G(u) := NG(u)∩ S; we will omit the subscript G when the graph

is clear from the context. We write dSG(u) = |NS
G(u)|. The maximum and the minimum degree

of G, denoted by ∆(G) and δ(G) respectively, are the largest and the smallest possible degree

of a vertex of G. The average degree of G, denoted usually by d(G), is simply the average of

all vertex degrees of G, i.e. d(G) := |V (G)|−1 ·
∑

v∈V (G) dG(v).

Given a vertex u, we will also represent the neighbourhood of u by a vector u ∈ {0, 1}V (G)

defined such that uv = 1 if and only if u ∼ v. Given a set U ⊂ V and a vector u ∈ RV ,

we will denote the projection of u onto the coordinate set S by projS(u), i.e. for any v ∈ S
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we have projS(u)v = uv. Given u, v ∈ V (G) we write divG(u, v) for the symmetric difference

N(u)△N(v). Thus |divG(u, v)| is simply the Hamming distance between u and v.

We will write G for the complement of the graph G. It is easy to note that for any graph G

we have hom(G) = hom(G) and f(G) = f(G) since divG(u, v) = divG(u, v) for any u, v ∈ V (G).

Given n ∈ N and p ∈ (0, 1), the Erdős−Rényi random graph G(n, p) is the n-vertex graph in

which each edge is included in the graph with probability p independently of every other edge.

We say that an event that depends on n occurs with high probability (whp) if its probability

tends to 1 as n → ∞.

Throughout this paper we will omit floor and ceiling signs when they are not crucial, for the

sake of clarity of presentation.

2 Tools

In this short section we introduce some tools required for the rest of the paper.

2.1 Graph theory tools

We will need the following version of Turán’s theorem (see for example Chapter 6 in [6]).

Theorem 2.1. Let G be a n-vertex graph with average degree d. Then G has an independent

set of size at least n/(d+ 1).

Besides this, the following result (Lemma 5.7 from [28]) will be quite advantageous, as it will

enable us to move to a large induced subgraph that is reasonably regular. Comparable results

were proved by Alon, Krivelevich and Sudakov in [3].

Lemma 2.2. Given a graph G on n vertices there is A ⊂ V (G) with |A| ≥ n/30 log n such that

the induced subgraph H = G[A] satisfies ∆(H) ≤ 5 log n · δ(H).

2.2 Probabilistic Tools

We will require some classic concentration inequalities. See e.g. appendix A in [4].

Theorem 2.3 (Chernoff Inequality). Let X be a random variable with binomial distribution

and let µ = E[X]. Then, for 0 ≤ δ ≤ 1, the following inequalities hold:

P
(
X ≤ (1− δ)µ

)
≤ exp

(
−δ2µ

2

)
.
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P
(
X ≥ (1 + δ)µ

)
≤ exp

(
−δ2µ

4

)
.

Theorem 2.4 (Hoeffding’s Inequality). Let X1, X2, . . . , Xn be independent random variables

such that ai ≤ Xi ≤ bi for each i ∈ [n], where ai, bi ∈ R. Then given t > 0, the random variable

Sn = X1 + · · ·+Xn satisfies:

P (|Sn − E[Sn]| ≥ t) ≤ 2 · exp

(
−2t2∑

i∈[n](bi − ai)2

)
.

The next result will be very useful when dealing with large deviations.

Theorem 2.5. Let n ∈ N, p ∈ [0, 1], L > 0 an let X ∼ Bin(n, p) be a random variable. Then:

P(X ≥ L) ≤
(
n

L

)
pL ≤

(enp
L

)L
.

We end this section with a very useful lower bound − due to Greenberg and Mohri [21] −
for the probability that a binomial random variable exceeds is mean.

Theorem 2.6. Let n ∈ N, p ∈ (n−1, 1) and let X ∼ Bin(n, p) be a random variable. Then:

P(X ≥ np) >
1

4
.

3 Distinct degrees through probability distributions

As mentioned in the Introduction, in [28] we introduced a general framework which provided

lower bounds on f(G) for a graph G. Roughly speaking, in using this approach, one aims to

find a set U ⊂ V (G) together with a probability distribution D on [0, 1]V (G) with the property

that certain small-ball type quantities associated to U are well controlled. We will summarise

what we require here, but a more extensive presentation can be found in [28], where the authors

introduced this set up. In particular, see the conclusion of the introduction of [28] for some of

the motivation for this approach along with Section 3 for further details and proofs.

Given a graph G and a probability vector p = (pv)v∈V (G) ∈ [0.1, 0.9]V (G) we will write G(p)

to denote the probability space on the set of induced subgraphs of G, determined by including

each vertex v ∈ V (G) independently with probability pv. Equivalently, given S ⊂ V (G), the

induced subgraph G[S] is selected with probability
∏

v∈S pv
∏

v∈V (G)\S(1−pv). Abusing notation

slightly2, we will usually write G(p) to denote a random graph G[S] ∼ G(p).

2As with the Erdős–Renyi random graph G(n, p).
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Throughout the paper, given a vertex u ∈ V (G), we will we write u ∈ {0, 1}V (G) to denote

the neighbourhood vector of u, which is given by

(u)v =

{
1 if uv ∈ E(G);

0 otherwise.

Note that, considering the standard inner product on RV (G), given by x · y =
∑

v∈V (G) xvyv,

this notation leads us to the following useful representation:

E
[
dG(p)(u)

]
= u · p. (2)

Expected degrees in suitable G(p)’s prove to be useful in finding bounds for f(G), however this

notion is still too rigid for our purposes. The parameter we are about to define turns out to be

robust enough.

Let G be a graph and let D be a probability distribution on [0.1, 0.9]V (G). Given distinct

vertices u, v ∈ V (G) and a set S ⊂ V (G), we define

badS
D(u, v) := max

c∈R
P

p∼D

(
|E[dSG(p)(u)]− E[dSG(p)(v)]− c| ≤ 1

)
. (3)

This quantity can be viewed as a small ball probability − a measurement for two vertices

u, v ∈ V (G) of how likely the expected degrees to S in G(p) are to differ by an (almost) fixed

amount. Given sets U, S ⊂ V (G), we also set

badS
D(U) :=

∑
{u,v}⊂U

badS
D(u, v).

Given another set V ⊂ V (G) we can also write

badS
D(U, V ) :=

∑
(u,v)∈U×V

badS
D(u, v).

We will sometimes suppress the superscript when S = V (G), e.g. badD(U) = bad
V (G)
D (U).

Lastly, let us remark that in (3) we do not need D to be defined on all vertex coordinates of

the set [0.1, 0.9]V (G); any vertex set T with S ⊆ T ⊆ V (G) is enough so that we can define D
on [0.1, 0.9]T , as we can see by looking at the RHS of (3).

As highlighted in [28], in order to find many distinct degrees in a graph G it suffices to find

a large set U ⊂ V (G) and a probability distribution D such that badD(U) is small.

Theorem 3.1. Let G be a graph, let D be a probability distribution on [0.1, 0.9]V (G) and let

U ⊂ V (G) with badD(U) = α · |U |. Then

f(G) = Ω

(
|U |

(1 + α) · log3/2 |U |

)
.
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Thus producing a set U and a distributionD with strong ‘bad’ control results in a lower bound

for f(G). We also proved in [28] that one can reverse this process, to obtain a distribution with

strong bad control from a lower bound on f(G) giving that the two approaches are comparable,

although we will not need this reverse direction here.

For the remainder of this section we will collect a number of results together, which will

be used in combination to exhibit distributions D with bad control. As indicated earlier, the

key benefit of working in this generalised setting is the flexibility of combining distributions on

different sets while maintaining bad control. This is illustrated by the following result.

Lemma 3.2. Let G be a graph with vertex partition V (G) =
⊔L

i=1 Vi and for each i ∈ [L] let

Di be a probability distribution on [0, 1]Vi. Then taking D to denote the product distribution

Πi∈[L]Di on [0, 1]V (G), for any distinct vertices u, v ∈ V (G) and any set S ⊂ V (G), one has:

badS
D(u, v) ≤ min

i∈[L]
badS∩Vi

Di
(u, v).

Proof. See Lemma 4.1 in [28].

Our second lemma gives a simple situation in which we can obtain ‘bad’ control. Let G be a

graph and let S ⊂ V (G). Let US denote the uniformly constant distribution on [0.1, 0.9]S,

given by selecting α ∈ [0.1, 0.9] uniformly at random and setting p = α1S ∈ [0.1, 0.9]S.

It is also convenient to write TS to denote the trivial S-induced probability distribution ,

the distribution on [0.1, 0.9]S which simply selects the vector p
0
= 1

2
· 1S with probability 1.

Lemma 3.3. Let G be a graph, S ⊂ V (G) and u, v ∈ V (G) such that dS(u) ≥ dS(v) +D for

some D > 0. Suppose that US denotes the uniform constant distribution on [0.1, 0.9]S, that D′

denotes a distribution on [0.1, 0.9]V (G)\S and that D denotes the product distribution US × D′

on [0.1, 0.9]V (G). Then badD(u, v) ≤ 3D−1.

Proof. See Lemma 4.2 from [28].

We next seek to provide ‘bad’ control for a set by blending neighbourhood structures together

− the idea here has some similarities to that of [22]. Let G be a graph, let U, S ⊂ V (G), where

U := {u1, . . . , uk}, and let β ∈ [0, 0.4]. We now let Bβ(U, S) denote the blended probability

distribution on [0.1, 0.9]S, which is defined as follows. First independently select αi ∈ [−β, β]

uniformly at random for each i ∈ [k] and set:

p′ :=
1

2
· 1+

∑
i∈[k]

αi · projS(ui) ∈ RS. (4)

Having made these choices, the distribution then returns p, a truncated version of p′, where
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p
v
=


p′
v

if p′
v
∈ [0.1, 0.9];

0.9 if p′
v
> 0.9;

0.1 if p′
v
< 0.1.

Our next lemma gives a useful extension of Lemma 4.3 from [28] which will allow us to obtain

strong control on badD(vi, vj). In particular, it is designed to be used in conjunction with the

partial decomposition from cluster neighbourhoods given in Section 4 (see Lemma 4.7).

Definition 3.4. Given a graph G, vertex sets U, S ⊂ V (G) and a parameter γ ∈ [0, 1], we say

U is γ-balanced to S if for all v ∈ S we have dUG(v) ≤ γ|U |.

Observe that U is always 1-balanced to S.

Lemma 3.5. Let G be a graph, β ∈ (0, 0.1), γ ∈ (0, 1], D ≥ 1 and let U := {u1, u2, . . . , ut}
and S be subsets of V (G) such that U is γ-balanced to S. Suppose there are d1, d2, . . . , dt > 0

and pairwise disjoint sets V1, V2, . . . , Vt ⊂ V (G) with ui ∈ Vi for all i ∈ [t] such that:

• |divSG(ui, vi)| ≤ di for each vi ∈ Vi and i ∈ [t];

• |divSG(ui, uj)| ≥ D + di + dj for all distinct i, j ∈ [t].

Suppose further that D denote the product distribution D = Bβ(U, S)×D′ on [0.1, 0.9]V (G) where

Bβ(U, S) denotes the blended probability distribution on [0.1, 0.9]S and D′ is any distribution on

[0.1, 0.9]V (G)\S. Then for all vi ∈ Vi and vj ∈ Vj with i ̸= j in [t] one has

badD(vi, vj) ≤
2

βD
+ 2 ·max

{
dSG(ui), d

S
G(uj)

}
· exp

(
−0.045

γβ2|U |

)
. (5)

Proof. For each i ∈ [t], given the vector p′ on RS from (4), define the random vector qi on RS

by qi := p′ − αi · projS(ui). A key observation is that qi is independent of αi. We will slightly

abuse notation by writing p for both a vector in [0.1, 0.9]V (G) and its projection projS(p) onto

the coordinate set S. Since D is the product distribution Bβ(R, S)×D′, we can do this without

much concern due to Lemma 3.2.

Fix i, j ∈ [t] with i ̸= j and vi ∈ Vi, vj ∈ Vj. Given c ∈ R, let E i,j
vi,vj

(c) denote the event that∣∣E[dG(p)(vi)]− E[dG(p)(vj)]− c
∣∣ ≤ 1. According to (3), it will suffice to show that:

P
(
E i,j

vi,vj
(c)
)
≤ 2

βD
+ 2max{dSG(ui), d

S
G(uj)} · exp

(
−0.045

γβ2|U |

)
.

Let us assume that dSG(vi) ≥ dSG(vj). Call a vertex v ∈ NS
G(ui) naughty if qi

v
/∈ [0.2, 0.8]. We

call the vertex ui problematic ifNS
G(ui) contains a naughty vertex and we denote this event by Fi.

By the law of total probability we get that

P
(
E i,j

vi,vj
(c)
)
= P

(
E i,j

vi,vj
(c)|Fi

)
· P(Fi) + P

(
E i,j

vi,vj
(c)|Fi

)
· P(Fi) ≤ P(Fi) + P

(
E i,j

vi,vj
(c)|Fi

)
. (6)

11



To upper bound P(Fi), let v ∈ S and note that qi
v
is a sum of d

U\{ui}
G (v) uniform independent

random variables, as the v-coordinate of ui is non-zero when v ∼ ui. Therefore, we have

P
(
qi

v
/∈ [0.2, 0.8]

)
= P

(
|qi

v
− 1/2| > 0.3

)
≤ 2 exp

(
−2 · 0.09

4β2d
U\{ui}
G (v)

)
≤ 2 exp

(
−2 · 0.09
4β2γ|U |

)
,

where the first inequality follows from Hoeffding’s inequality, whereas the second one uses that

d
U\{ui}
G (v) ≤ dUG(v) ≤ γ|U | as U is γ-balanced to S. By the union bound we then get

P(Fi) ≤ dSG(ui) · P
(
qi

v
/∈ [0.2, 0.8]

)
≤ 2dSG(ui) · exp

(
− 0.045(γβ2|U |)−1

)
. (7)

To compute P
(
E i,j

vi,vj
(c)|Fi

)
we condition on any choice of α := (αl)l ̸=i such that Fi does not

hold. Given such a choice, let us first note that p′
v
= qi

v
+ αiuiv ∈ [0.1, 0.9] for all v ∈ NS

G(ui)

since |αi| < 0.1. So none of the NS
G(ui)-coordinates of p

′ will get truncated and recall that αi is

independent of Fi. Given a choice of α, consider now the following expression as a map of αi:

fc(αi) := E[dSG(p)(vi)]− E[dSG(p)(vj)]− c = (vi − vj) · p− c. (8)

Having conditioned on α above, note that the event E i,j
vi,vj

(c) holds only if fc(αi) lies in an

interval of length 2. To bound the probability of this happening we have to understand how

fc changes as αi increases. Observe the contribution from each coordinate v of p to the inner

product on the right hand side of (8) is 0 if v /∈ NS
G(ui) and exactly αi otherwise, since none of

these coordinates were truncated from p′ when conditioning on Fi. It follows that for ε > 0:

fc(αi + ε)− fc(αi) = ε
∑
v∈S

(
(vi)v − (vj)v

)
· 1v∼ui

= ε
(
|NS

G(ui) ∩NS
G(vi)| − |NS

G(ui) ∩NS
G(vj)|

)
.

However, it is not hard to see that

2|NS
G(ui) ∩NS

G(vi)| = dSG(ui) + dSG(vi)− divSG(ui, vi),

2|NS
G(ui) ∩NS

G(vj)| = dSG(ui) + dSG(vj)− divSG(ui, vj).

It follows that

2|NS
G(ui) ∩NS

G(vi)| − 2|NS
G(ui) ∩NS

G(vj)| = dSG(vi)− dSG(vj)− divSG(ui, vi) + divSG(ui, vj)

≥ divSG(ui, vj)− divSG(ui, vi)

≥ divSG(ui, uj)− divSG(uj, vj)− divSG(ui, vi) ≥ D,

by using the hypothesis, that dSG(vi) ≥ dSG(vj) and triangle’s inequality. From here we can then

deduce that f(αi + ε)− f(αi) ≥ εD/2.

Therefore, conditioned on α as above, if E i,j
vi,vj

(c) occurs then αi lies in an interval of length

at most 4/D. This implies that P(Ei,j
vi,vj

(c)|F i) ≤ 2β−1D−1. Combined with (6) and (7), this

proves the lemma.
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Let us note that by taking Ei = 0 and Wi = {ui} for each i ∈ [|U |] in the previous lemma

we recover the following result, which is similar to Lemma 4.3 from [28].

Corollary 3.6. Let G be a graph, D ≥ 1, β ∈ (0, 0.1), γ ∈ (0, 1] and U, S ⊂ V (G) such that

U is γ-balanced to S and |divSG(u, v)| ≥ D for all u ̸= v in U . Suppose that D is the product

distribution Bβ(U, S)×D′ on [0.1, 0.9]V (G) where Bβ(U, S) is the blended probability distribution

on [0.1, 0.9]S and D′ is any distribution on [0.1, 0.9]V (G)\S. Then for all u, v ∈ U one has:

badD(u, v) ≤
2

βD
+max{dSG(u), dSG(v)} · 2 exp

(
−0.045

γβ2|U |

)
. (9)

As a quick application of the previous corollary, we obtain a proof of Theorem 1.5.

Proof of Theorem 1.5. To begin, we note some convenient assumptions between the parameters.

Observe first that we may assume that D ≤ |U |3/2. Indeed the conclusion for larger values just

asserts that f(G) ≥ Ω̃(|U |), which follows from the case D = |U |3/2. We can also assume that

|S| ≤ D|U |2 since for larger values of |S| it is easily seen that if properties (i) and (ii) from

the Theorem hold, then they also hold for a subset S ′ ⊂ S with this bound. Thus, working

with S ′ in place of S, we can assume this upper bound. Lastly, note that we can assume that

γ ≥ 1/|U |, as otherwise conditions (i) and (ii) cannot be satisfied.

Set β−1 := 10
√

γ|U | log |U | and apply Corollary 3.6. This gives

badD(u, v) ≤
20
√
γ|U | log |U |
D

+ |S| · 2 exp(−4.5 log |U |) ≤
40
√
γ|U | log |U |
D

,

where the final inequality uses that γ|U | ≥ 1 and that D|S| ≤ |U |3.5. Summing over all pairs

of vertices in U , this gives badD(U) ≤ α|U | where α := 20D−1
√
γ|U | log |U |. An application of

Theorem 3.1 then completes the proof.

The last lemma of this section provides a hypothesis to maintain ‘bad’ control when com-

bining multiple disjoint sets with ‘bad’ control under different well-behaved distributions.

Lemma 3.7. Let 1 ≤ m0 ≤ M ≤ 2M ≤ M0 and let f : [m0,M0] → [0,∞) be a differentiable

map such that f is increasing, while f ′ is decreasing on [m0,M0]. Suppose G is a graph which

contains disjoint vertex sets V1, V2, . . . , Vt, S satisfying the following properties:

(i) There are sets Ui ⊂ Vi such that
∑

i∈[t] |Ui| ≥ M with maxi∈[t] |Ui| ≥ m0;

(ii) For each i ∈ [t] there is a distribution Di on [0.1, 0.9]Vi such that badVi
Di
(Ui) ≤ |Ui|f(|Ui|);

(iii) There is a distribution E on [0.1, 0.9]S such that badS
E (ui, uj) ≤ f ′(M0) for all ui ∈ Ui and

uj ∈ Uj with i ̸= j.

13



Then there is a set U ⊂ V (G) with |U | ≥ M and a distribution D on [0.1, 0.9]V (G) such that

badD(U) ≤ |U |f(|U |).

Proof. We first note that if a ∈ [m0,M ] and 0 ≤ b ≤ a then m0 ≤ a+ b ≤ 2M ≤ M0 and

a · f(a) + b · f(b) + ab · f ′(M0) ≤ (a+ b) · f(a+ b). (10)

Indeed, by the mean value theorem there is ξ ∈ [a, a + b] ⊂ [m0,M0] with the property that

f(a+ b) = f(a) + bf ′(ξ). As f ′ is decreasing on [m0,M0], we have f ′(M0) ≤ f ′(ξ) and so

af(a) + bf(b) + ab · f ′(M0) = a
(
f(a) + b · f ′(M0)

)
+ bf(b)

≤ a
(
f(a) + b · f ′(ξ)

)
+ bf(b)

≤ af(a+ b) + bf(b) ≤ (a+ b) · f(a+ b),

where the final inequality uses that f is increasing and b ≤ a+ b.

We are now able to prove the lemma. Order the sets so that |U1| ≥ |U2| ≥ . . . ≥ |Ut|.
Note that if |U1| > M then the conclusion is trivial taking U = U1 and D = D1 × T , where

T is the trivial distribution on [0.1, 0.9]V (G)\U1 . Thus we may assume that |U1| ≤ M . Setting

U<j :=
⋃

i<j Ui for all j ∈ [2, t+1], by discarding sets {Ui}i>t′ for some t′ ≤ t we can additionally

assume that |U<j| < M for all j ≤ t and that U := U<t+1 satisfies M ≤ |U | ≤ 2M < M0.

Observing that m0 ≤ |U1| ≤ |U<j| ≤ M for j ∈ [2, t], we can apply (10) to obtain

|U<j| · f(|U<j|) + |Uj| · f(|Uj|) + |U<j||Uj| · f ′(M0) ≤ |U<j+1| · f(|U<j+1|). (11)

LetX := V (G)\
(
S∪
⋃t

i=1 Vi

)
and take D to be the product distribution D :=

∏t
i=1 Di×E×T

on
∏t

i=1[0.1, 0.9]
Vi × [0.1, 0.9]S × [0.1, 0.9]X = [0.1, 0.9]V (G), where T is the trivial X-induced

distribution. By Lemma 3.2 and (i)-(iii) from the hypothesis we obtain

badD(U) =
∑
i∈[t]

badD(Ui) +
∑

{i,j}⊂[t]

badD(Ui, Uj)

≤
∑
i∈[t]

badVi
Di
(Ui) +

∑
{i,j}⊂[t]

badS
E (Ui, Uj)

≤
∑
i∈[t]

badVi
Di
(Ui) +

∑
{i,j}⊂[t]

|Ui| · |Uj| · max
(vi,vj)∈Ui×Uj

{
badS

B(vi, vj)
}

≤
∑
i∈[t]

|Ui| · f(|Ui|) +
∑

{i,j}⊂[t]

|Ui| · |Uj| · f ′(M0)

=
∑
i∈[t]

|Ui| · f(|Ui|) + f ′(M0) ·
∑
j∈[t]

|U<j| · |Uj| ≤ |U | · f(|U |),

where the final inequality follows by repeatedly applying (11). This completes the proof.
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4 Cluster neighbourhoods

In order to prove Theorem 1.2 it will be crucial to understand how vertex neighbourhoods

correlate, or cluster, in the graph. The following definition gives a useful measurement of this

neighborhood clustering.

Definition 4.1. Let G be a graph, let v be a vertex of G and let S ⊂ V (G). Given M > 1 and

t ∈ N ∪ {0}, the (M, t)-cluster neighbourhood of v to S is defined as

W S
t (v;M) :=

{
u ∈ V (G) :

∣∣NS
G(u)∆NS

G(v)
∣∣ ≤ ( 4t

M

)
·
∣∣NS

G(v)
∣∣}.

When S and M are clear from the context we simply write Wt(v) or W S
t (v).

Given λ > 1, setting Θ := (M,λ), the Θ-moment of v to S is given by

T S
Θ(v) := min

{
t ∈ N ∪ {0} : |W S

t (v;M)| ≤ λ · |W S
t (v;M)|

}
.

The Θ-cluster of v to S is then given by W S
TΘ(v)(v;M). Once again, when S,M are clear from

the context we write W∗(v) := W S
TΘ(v)(v;M) and W+(v) := W S

TΘ(v)+1(v;M).

In the next subsection we present some useful properties of cluster neighbourhoods. The

second subsection then proves a key lemma, which allows a partial decomposition of a graph

using its cluster neighbourhoods. This result will be central in our proof of Theorem 1.2.

4.1 Simple properties of cluster neighbourhoods

The next lemma captures several useful facts about cluster neighbourhoods and Θ-clusters.

Lemma 4.2. Given G,S and Θ = (M,λ) as above, the following hold:

(i) W S
t (v) ⊂ W S

t+1(v) for all t ≥ 0.

(ii) |W∗(v)| = |W S
TΘ(v)(v)| ≥ λTS

Θ(v).

(iii) T S
Θ(v) ≤ logλ |S| ≤ logλ |G|.

(iv) |W+(v)| ≤ λ|W∗(v)|.

Proof. Part (i) is clear from the definition of W S
t (v). Parts (ii) and (iv) hold by the definition of

T S
Θ(v), noting that v ∈ W S

0 (v). Lastly, part (iii) follows from (ii) since |W∗(v)| ≤ |S| ≤ |G|.

We next present the following simple, yet useful lemmas.
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Lemma 4.3. Let G,S and Θ = (M,λ) be as above. Then for any vertex v and non-negative

integer t < log4M − 1 one has |W S
t (v)| ≤ 2∆(G).

Proof. Fix v ∈ V (G) and double count the edges (say there are ev of them) with one endpoint

in W S
t (v) and the other in NS(v). On one hand, each vertex in NS(v) contributes at most ∆(G)

edges, hence ev ≤ ∆(G) · dS(v). On the other hand, each vertex in W S
t (v) must be adjacent to

at least dS(v)(1− 4tM−1) vertices in NS(v), thus ev ≥ |W S
t (v)| · dS(v)(1− 4tM−1). The result

follows by combining these two bounds and using that 4t < M/2.

Lemma 4.4. Let G,S and Θ = (M,λ) be as above. Let t1, t2 ∈ N and suppose v1, v2 ∈ V (G)

such that v2 /∈ W S
t1+1(v1) and 3 · 4t1dS(v1) ≥ 4t2dS(v2). Then W S

t1
(v1) ∩W S

t2
(v2) = ∅.

Proof. Assume by contradiction there is u ∈ W S
t2
(v2) ∩W S

t1
(v1). Then, by triangle inequality

|divSG(v1, v2)| ≤ |divSG(v1, u)|+ |divSG(v2, u)| ≤ M−1
(
4t1dS(v1) + 4t2dS(v2)

)
≤ 4M−14t1dS(v1),

which means that v2 ∈ W S
t1+1(v1), contradicting our hypothesis. Therefore our assumption is

false and so W S
t1
(v1) ∩W S

t2
(v2) = ∅.

Corollary 4.5. Let G,S and Θ = (M,λ) be as above. Let t1, t2 ∈ N and suppose v1, v2 ∈ V (G)

such that v3−i /∈ W S
ti+1(vi) for both i ∈ {1, 2}. Then W S

t2
(v2) ∩W S

t1
(v1) = ∅.

Proof. Relabelling if necessary, we can assume that 4t1dS(v1) ≥ 4t2dS(v2). The degree condition

in Lemma 4.4 then holds, implying the result.

We note the following short lemma shows that having many clusters of small size and high

enough degree in a graph guarantees a certain level of diversity. It also serves as a preamble to

the next result, which states that otherwise vertices cluster around some centers of mass.

Lemma 4.6. Let G,S and Θ = (M,λ) be as above. Let n := |V (G)| and suppose there is a

set A ⊂ V (G) with |A| = m ≥ δn ≥ 1 such that |W S
t (v)| ≤ n/m and dSG(v) ≥ d for all v ∈ A.

Then there is U ⊂ A with |U | ≥ δm/2 such that | divS(u, v)| ≥ 4td/M for all u ̸= v in U .

Proof. Let us build a new graphH on the vertex setA by drawing an edge between two vertices u

and v if | divS(u, v)| < 4td/M . Now, given v ∈ A, let us observe that NH(v) ⊂ W S
t (v), therefore

the average degree of J is at most n/m. By Turán’s theorem we find an independent set U in

H with |U | ≥ |A|(n/m+ 1)−1 ≥ m|A|/(n+m) ≥ δm/2, which is the desired set.

4.2 Partial decomposition through cluster neighbourhoods

This subsection is dedicated to a central result in our proof of Theorem 1.2. Although the

statement is technical, roughly speaking, it gives conditions under which we are able to use

cluster neighbourhoods in a graph G to obtain disjoint sets V1, . . . , Vt, S, such that:
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•
⋃

i∈[t] Vi covers a substantial portion of V (G),

• the neighbourhoods of vertices within each Vi to S are similar,

• the neighbourhoods of vertices within distinct Vi to S differ substantially,

• the overall contribution of degrees from Vi to S is balanced (in a certain technical sense).

We proceed to the statement.

Lemma 4.7. Let G be an n-vertex graph with n ≥ 232. Suppose that k ∈ N, λ,M ≥ 2, α > 0

such that log22 n ≤ k ≤ n log−3
2 n and 0 ≤ α ≤ (λ log5 n)−1, and that Θ = (M,λ). Suppose that

A ⊂
{
v ∈ V (G) : M log2 n ≤ dG(v) ≤ n/2 and

∣∣W V (G)
TΘ(v)(v;M)

∣∣ ≤ αn
}
⊂ V (G)

satisfies |A| ≥ n/8. Then there is a set U = {u1, . . . , ut} ⊂ A, a collection of pairwise-disjoint

sets V1, V2, . . . , Vt, S ⊂ V (G) and a set {di}i∈[t] ⊂ [0, n] satisfying the following properties:

(i) ui ∈ Vi and |Vi| ≤ αn for all i ∈ [t];

(ii) t ≤ k. Furthermore, if t < k then
∑

i∈[t] |Vi| ≥ n
1000λ log2 n

;

(iii) divSG(ui, vi) ≤ di for all vi ∈ Vi and i ∈ [t];

(iv) divSG(ui, uj) ≥ (5M)−1 ·max
(
dG(ui), dG(uj)

)
+ di + dj for all i ̸= j in [t];

(v) The set U is γ-balanced to S, where γ := log5 n ·max
(
n−1 ·∆(G), t−1

)
.

Proof. To begin with, write W∗(v) = W
V (G)
TΘ(v)(v;M) and W+(v) = W

V (H)
TΘ(v)+1(v;M) for all v ∈ A.

By the pigeonhole principle there are L ∈ [n], T ∈ [logλ(n)] ⊂ [log2 n] and a set B ⊂ A with

|B| ≥ |A|/ log2 n such that |W∗(v)| ∈ [L, 2L] and TΘ(v) = T for all v ∈ B. Also L ≤ αn by the

definition of A, whereas Lemma 4.2 (iv) gives |W+(v)| ≤ λ|W∗(v)| ≤ 2λL.

Next, we take a random partition V (G) = R∪S by adding each v ∈ V (G) independently to

R with probability 3/4 and to S with probability 1/4. Set p := min
(
32k|B|−1, (4λL)−1

)
≤ 0.2

and select a random subset U ′ of R by including each vertex independently with probability

p′ := 4p/3 < 0.3. Stepping back, it is easy to see that elements of U ′ are selected from V (G)

independently with probability p and, moreover, U ′ ∩ S = ∅.

We now consider the following set

U :=
{
u ∈ B ∩ U ′ : W+(u) ∩ U ′ = {u} and |W∗(u) ∩R| ≥ |W∗(u)|/2

}
,

and the following three related events:

• A1 is the event that |U | ∈
[
2−5p|B|, 2p|B|

]
;

• A2 is the event that |NH(v) ∩ U | ≤ log2 n ·max
(
1, p ·∆(G)

)
for all v ∈ V (G);
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• A3 is the event that divSG(u, v) =

(
1

4
± 0.05

)
divG(u, v) for all vertices u, v ∈ V (G) with

divG(u, v) ≥ 215 log n.

We will now show that these events can occur simultaneously.

Claim: P(A1 ∩ A2 ∩ A3) > 0.

To see this, let us first look at P(A1) and note that |U ′| ∼ Bin(|B|, p), thus:

E
[
|U ′|
]
= p|B| ≥ min

(
32k, |B| · (4λL)−1

)
≥ min

(
32k, n(32λL log2 n)−1

)
≥ log2 n,

where we have used that k ≥ log2 n and that L ≤ αn ≤ n(λ log5 n)−1. Since U ⊂ U ′, by

applying Theorem 2.3 (Chernoff’s inequality) we get:

P(|U | > 2|B|p) ≤ P(|U ′| > 2|B|p) ≤ exp(−|B|p/4) ≤ exp(− log2 n/4) < n−3 < p/64. (12)

Next, for each v ∈ B let Ev denote the event that
∣∣R∩ (W∗(v) \ {v})

∣∣ ≥ ∣∣W∗(v) \ {v}
∣∣/2. As∣∣R ∩ (W∗(v) \ {v})

∣∣ ∼ Bin
(
|W∗(v)| − 1, 3/4

)
we have P(Ev) ≥ 1/4 by Theorem 2.6. This gives

P
(
v ∈ U

)
≥ P

(
v ∈ U ′) · P(U ′ ∩ (W+(v) \ {v}) = ∅

∣∣ Ev) · P(Ev)
≥ p · (1− p)|W∗(v)| · 1

4
≥ p(1− p)2λL

4
≥ pe−4λLp

4
≥ pe−1

4
≥ p

16
,

since 1− x ≥ e−2x for x ∈ [0, 1/2] and pλL ≤ 1/4. Therefore E
[
|U |
]
≥ p|B|/16. As |U | ≤ |B|,

by Markov we get P
(
|U | ≥ p|B|/32

)
≥ p/32. Combined with (12), this gives

P(A1) = P
(
|U | ∈

[
2−5p|B|, 2p|B|

])
≥ p/64.

To estimate P(A2), given v ∈ V (G) we note that |NG(v) ∩ U ′| ∼ Bin(|NG(v)|, p) and that

E
[
|NG(v) ∩ U ′|] = p · |NG(v)| ≤ p ·∆(G). By Theorem 2.5 we obtain that

P
(
|NG(v) ∩ U ′| ≥ K

)
≤ (e∆(G)p/K)K ≤ (e/ log2 n)log

2 n ≤ n−4,

where K := log2 n ·max
(
1, p ·∆(G)

)
. In particular, as |NG(v) ∩ U | ≤ |NG(v) ∩ U ′|, we get

P(A2) ≥ P
(
|NG(v) ∩ U ′| ≤ K for all v ∈ V (G)

)
≥ 1− n · n−4 ≥ 1− p/256.

Lastly, to lower bound P(A3), note that given u, v ∈ V (G) with divG(u, v) ≥ 215 log n, we

have divSG(u, v) ∼ Bin
(
divG(u, v), 1/4

)
and E

[
divSG(u, v)

]
= divG(u, v)/4 ≥ 213 log n. Thus

P
(
|divSG(u, v)− divG(u, v)/4| ≥ 0.05 · divG(u, v)

)
≤ exp

(
− 0.052(213 log n)/4

)
≤ n−5,

by using Chernoff’s inequality. We then deduce that P(A3) ≥ 1− n2(n−5) ≥ 1− p/256.
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Combining our estimates, we get P(A1 ∩A2 ∩A3) ≥ P(A1)− P
(
A2

)
− P

(
A3

)
> p/128 > 0,

as claimed. We thus fix a choice of R, S, U and U ′ such that A1 ∩ A3 ∩ A3 holds.

We are now in a position to select U, V1, . . . , Vt and S as in the statement of the Lemma. We

have already chosen the set S. As A1 holds, we may also assume, by discarding some elements,

that U = {u1, . . . , ut} where t = ⌈2−5p|B|⌉. For all i ∈ [t] we let Vi := W∗(ui) ∩ R. Note that,

by definition of U we have ui /∈ W+(uj) for all i ̸= j in [t], which by Corollary 4.5 implies that

Vi ∩ Vj ⊂ W∗(ui) ∩W∗(uj) = ∅. Therefore the sets V1, . . . , Vt are pairwise disjoint. As Vi ⊂ R

for all i ∈ [t], we also have Vi ∩ S = ∅.

We can finally prove that (i)-(v) hold for these sets. As ui ∈ A we have |Vi| ≤ |W∗(ui)| ≤ αn,

giving (i). Recalling the definition of p we see that t = ⌈p|B|/32⌉ = min
(
k, ⌈|B|(32λL)−1⌉

)
≤ k.

Furthermore, if t < k then t ≥ |B| · (32λL)−1. Besides, |Vi| = |W∗(ui)∩R| ≥ |W∗(ui)|/2 ≥ L/2

since ui ∈ U . We therefore deduce the following inequality, which shows that (ii) holds:∑
i∈[t]

|Vi| ≥
tL

2
≥ |B|

32λL
· L
2
≥ |A|

64λ log2 n
≥ n

1000λ log2 n
.

To confirm (iii) and (iv), fix i ̸= j with dG(ui) ≥ dG(uj). As ui, uj ∈ U , from the definition

of U we deduce that uj /∈ W+(ui). Since ui ∈ A, it follows that

divG(ui, uj) ≥
4T+1

M
· dG(ui) ≥

4

M
·M log2 n ≥ 215 log n.

Moreover, given vi ∈ Vi and vj ∈ Vj, we have vi ∈ W∗(ui) and vj ∈ W∗(uj). Thus

divG(ui, vi) ≤
4T

M
· dG(ui) and divG(uj, vj) ≤

4T

M
· dG(uj) ≤

4T

M
· dG(ui).

Moving to S, since dG(ui) ≥ M log2 n and A2 holds, given i ∈ [t] and vi ∈ Vi we have

divSG(ui, vi) ≤ max
(
(0.25 + 0.05) · divG(ui, vi), 215 log n

)
≤ 0.3 · 4

T

M
· dG(ui),

Continuing along these lines, as divG(ui, uj) ≥ 215 log n for i ̸= j, we obtain

divSG(ui, uj) ≥ (0.25− 0.05) · divG(ui, uj) ≥ 0.8 · 4
T

M
· dG(ui)

≥ 0.2

M
· dG(ui) + divSG(ui, vi) + divSG(uj, vj).

Thus (iii) and (iv) hold by taking di = 0.3 · 4T · dG(ui)/M and dj = 0.3 · 4T · dG(uj)/M .

It only remains to check that (v) is satisfied when γ = log5 n ·max(∆/n, 1/t). The statement

follows since A1 and A3 hold, because for all v ∈ S ⊂ V (G) we have

|NH(v) ∩ U | ≤ log2 n ·max
(
1, p ·∆(G)

)
= log2 n ·max

(
|U |−1, p ·∆(G) · |U |−1

)
· |U |

≤ log5 n ·max
(
t−1, n−1 ·∆(G)

)
· |U | = γ|U |,

where the final inequality uses |U | ≥ p|B|/32 ≥ 2−5|A|p log−2 n ≥ 2−8pn log−2 n ≥ pn log−3 n.

With this, we have completed the proof of the lemma.
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5 Main Theorem

The focus of this final section will be on the proof of Theorem 5.1 below. Our main result,

Theorem 1.2, follows immediately from combining this result with Theorem 3.1.

Theorem 5.1. There is C > 1 such that the following holds with g1(x) := exp(C · (log2 x)2/3).
Suppose that G is an n-vertex graph and let k ∈ [1,∞) such that n ≤ k2 and hom(G) ≤ n2/k3.

Then there is a set U ⊂ V (G) with |U | ≥ k/g1(k) and a probability distribution D on [0.1, 0.9]V (G)

with badD(U) ≤ |U | · g1(|U |).

As mentioned in the Introduction, our proof will be inductive. Here we will also sometimes

require the following alternative result, which appeared3 as Theorem 5.1 in [28].

Theorem 5.2. There is C > 1 such that the following holds with g2(x) := C(log2 x)
2. Suppose

that G is an n-vertex graph and let k ∈ [1,∞) such that n ≥ k2 and hom(G) ≤ n/k. Then

there is a set U ⊂ V (G) with |U | ≥ k/g2(k) and a probability distribution D on [0.1, 0.9]V (G)

with badD(U) ≤ |U | · g2(|U |).

5.1 Proof of Theorem 5.1

We will prove the theorem by induction on n. Note that we can assume n ≥ k3/2, as otherwise

the hypothesis gives hom(G) ≤ n2/k3 < 1 which is never satisfied if n ≥ 1.

For the induction it is convenient to prove the theorem taking g1(x) := C1 exp(C2(log x)
2/3)

for constants C1, C2 > 1 instead; it is easily seen the statement given in Theorem 5.1 follows

quickly from this by letting C := C2 logC1. Observe that g1 is increasing on [1,∞) and that

its derivative

g′1(x) =
2C1C2

3
·
exp

(
C2(log x)

2/3
)

x(log x)1/3

is decreasing on [x0,∞), where x0 := eC
3
2 . By taking C1 sufficiently large we can assume n (and

hence k, as k2 ≥ n) is sufficiently large for our estimates below, and that log k ≥ 1
2
log n > x0,

which will be helpful in applying Lemma 3.7 below.

As a hypothesis for our induction, we will assume the result holds for allG[V ] with V ⊊ V (G).

To take advantage of this, we introduce the function k : P
(
V (G)

)
→ [0,∞) given by

k(V ) :=

{
k ·
( |V |

n

)2/3
if |V |1/2 ≥ n2/k3,

|V | ·
(
k3

n2

)
if |V |1/2 ≤ n2/k3.

As any non-trivial subset V ⊊ V (G) satisfies hom(G[V ]) ≤ hom(G) ≤ n2/k3, it follows that:

3The presentation here differs very slightly from Theorem 5.1 in [28] in that the hypothesis there was that

k ≥ 1, n ≥ 20000k2 and hom(G) ≤ n/25k. However, the statement in Theorem 5.2 follows from this by applying

this result with k′ := k/200 in place of k (taking C large enough to cover the small regime when k′ < 1).
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(O1) If |V | ∈ [n4/k6, n) then |V |1/2 ≥ n2/k3, hence k(V ) = k(|V |/n)2/3. Thus |V | ≤
(
k(V )

)2
and hom(G[V ]) ≤ n2/k3 = |V |2/k(V )3, so by induction there is U ⊂ V and a distribution

E on [0.1, 0.9]V such that |U | ≥ k(V )/g1(k(V )) and badE(U) ≤ |U | · g1(|U |).

(O2) If |V | ≤ n4/k6 then |V |1/2 ≤ n2/k3, hence k(V ) = |V |(k3/n2). Thus |V | ≥
(
k(V )

)2
and

hom(G[V ]) ≤ n2/k3 = |V |/k(V ), so by Theorem 5.2 there is U ⊂ V and a distribution E
on [0.1, 0.9]V such that |U | ≥ k(V )/g2(k(V )) and badE(U) ≤ |U | · g2(|U |).

We need to show that there is a set U ⊂ V (G) with |U | ≥ k/g1(k) and a distribution D on

[0.1, 0.9]V (G) with badD(U) ≤ |U | · g1(|U |). The following strategy will be key in the proof.

Strategy: First find disjoint sets V1, V2, . . . , Vt, S ⊂ V (G) and a distribution E on [0.1, 0.9]S.

Given i ∈ [t], we apply either (O1) or (O2) to Vi (depending on |Vi|) to obtain sets Ui ⊂ Vi

and distributions Di on [0.1, 0.9]Vi such that:

• |Ui| ≥ k(Vi)/g1(k(Vi)) and badVi
Di
(Ui) ≤ |Ui| · g1(|Ui|) if (O1) applies;

• |Ui| ≥ k(Vi)/g2(k(Vi)) and badVi
Di
(Ui) ≤ |Ui| · g2(|Ui|) if (O2) applies.

This naturally results in a partition [t] = I1 ⊔ I2 according to which (Oa) with a ∈ {1, 2}
applies. We can then complete the proof with Lemma 3.7 (with parameters in that lemma as

m0 = x0, M = k/g1(k) and M0 = 2k) provided we can ensure that:

(A) There is a distribution E on [0.1, 0.9]S such that badS
E (ui, uj) ≤ g′1(2k) for all ui ∈ Ui and

uj ∈ Uj with i ̸= j;

(B)
∑

i∈Ij |Ui| ≥ k/g1(k) for some j ∈ {1, 2} with maxi∈Ij |Ui| ≥ x0.

Before proceeding, we fix the following parameters, as well as Θ = (M,λ):

log2 λ = (log2 k)
4
9 , log2 T = (log2 k)

5
9 , log2M = (log2 k)

2
3 . (13)

To begin with, let A = {v ∈ V (G) : dG(v) < n/2}. Note that we may assume that |A| ≥ n/2;

otherwise we simply work with G instead, as the hypothesis and the conclusion of Theorem 5.1

do not change under taking complement. Given Θ as above, we will write W∗(v) to denote the

Θ-cluster of v in G. We consider the partition A = A1 ⊔ A2 ⊔ A3 given by:

A1 :=
{
v ∈ V (G) : dG(v) ∈ (k3/2/T, n/2) with |W∗(v)| ≥ 4k

}
,

A2 :=
{
v ∈ V (G) : dG(v) ∈ (k3/2/T, n/2) with |W∗(v)| < 4k

}
,

A3 :=
{
v ∈ V (G) : dG(v) < k3/2/T

}
.

Our proof proceeds according to the size of these sets.
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Case 1: There is v0 ∈ A1.

Let t = TΘ(v0). We start by taking a 4k-element subset S0 ⊂ W∗(v0) = Wt(v0), which is

possible as v0 ∈ A1, and define:

Y := {v ∈ N(v0) : d
S0
G (v) ≤ 3k} and Y := {v /∈ N(v0) : d

S0
G (v) ≥ k}.

We will show that neither of these sets is too large and then apply induction to both sets

V1 := N(v0) \ (Y ∪S0) and V2 := V (H) \ (N(v0)∪ Y ∪S0), combining them together and using

concavity to show that (despite the small loss of vertices) we get a set of the desired size.

To see this, we double count the non-edges between N(v0) and S0. Recall that S0 ⊂ Wt(v0),

so there are at most |S0|(4td0/M) = (4k)(4td0/M) such non-edges. However each v ∈ Y sends at

least k non-edges to N(v0), so this is at least |Y |k, giving |Y | ≤ 4t+1d0/M . By similarly double

counting edges between V (H) \N(v0) and S we get |Y | ≤ 4t+1d0/M . As a consequence,

|V1| ≥ d0 − 4t+1d0/M − 4k ≥ 15d0/16 and |V2| ≥ n− d0 − 4t+1d0/M − 4k ≥ n− 17d0/16,

using 4t+1/M ≤ 2−5, which is true since t = TΘ(v) ≤ logλ n ≤ 2 logλ k ≤ log4M − 6 by Lemma

4.2 (iii) and also d0/2
5 ≥ k3/2/25T ≥ 4k.

First observe that dSG(u1) ≥ dSG(u2) + 2k for all u1 ∈ U1 and u2 ∈ U2 by construction, thus,

by Lemma 3.3 taking E = US we obtain badS
E (u1, u2) ≤ 3/2k ≤ exp(C2

2
(log k)2/3)/k ≤ g′1(2k)

for all u1 ∈ U1 and u2 ∈ U2. This provides (A) from the Strategy.

It remains to show that (B) also holds. To do this, we will split the argument into two

subcases according to the value of dG(v0).

Case 1(a): dG(v0) = d0 ≥ 2n4/k6.

Since d0 ≤ n/2 we have n− d0 ≥ d0 and so |Vi| ≥ d0 − (4t+1/M)d0 − 4k ≥ d0/2 ≥ n4/k6 for

i ∈ {1, 2}. Setting ki := k(Vi) for i = 1, 2 we find via the induction in (O1) a subset Ui ⊂ Vi

and a distribution Di on [0.1, 0.9]Vi such that |Ui| ≥ ki/g1(ki) and badDi
(Ui) ≤ |Ui| · g1(|Ui|).

Next, note that |V2|/n ≥ (n − 17d0/16)/n > 0.46. As the map x → x2/3 − (1 + 3x)/4 is

positive for x ∈ (0.46, 1), we deduce that(
|V2|
n

) 2
3

≥ 1

4

(
1 +

|V2|
n

)
= 1− 3

4

(
1− |V2|

n

)
≥ 1− 3

4

(
|V1|
n

+
4t+2d0
Mn

)
≥ 1− |V1|

n
,

where the final inequality holds since
4t+2d0
Mn

<
|V1|
3n

. Therefore, we get, as desired, that

|U1|+ |U2| ≥
k1

g1(k1)
+

k2
g1(k2)

=
k

g1(k1)
·
(
|V1|
n

) 2
3

+
k

g1(k2)
·
(
|V2|
n

) 2
3
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≥ k

g1(k)
· |V1|

n
+

k

g1(k)
·
(
1− |V1|

n

)
≥ k

g1(k)
.

Noting also that maxi∈[2] |Ui| ≥ k/2g1(k) ≥ k1/2 ≥ x0 this gives (B).

Case 1(b): dG(v0) = d0 ∈ (k3/2/T, 2n4/k6).

As d0 is smaller here than in Case 1(a), the bound on |V2| from Case 1(a) still applies, and in

particular |V2| ≥ n4/k6. Thus V2 falls into (O1). Setting k2 := k(V2), this gives a set U2 ⊂ V2

with |U2| ≥ k/g1(k2) and a distribution D2 on [0.1, 0.9]V2 with badD2
(U) ≤ |U2| · g1(|U2|).

Next, we again have d0/2 ≤ |V1| ≤ d0 ≤ 2n4/k6. Take a set V ′
1 ⊂ V1 of size min(|V1|, n4/k6),

so that n4/k6 ≥ |V ′
1 | ≥ |V1|/2. Therefore by (O2), taking k1 = k(V ′

1), there is a set U1 ⊂ V ′
1

with |U1| ≥ k1/g2(k1) and a distribution D1 on [0.1, 0.9]V1 with badD1
(U1) ≤ |U1| · g2(|U1|).

As the bound
(
|V2|/n

)2/3 ≥ 1− |V1|/n still applies here, it follows that

|U1|+ |U2| ≥
k1

g2(k1)
+

k2
g1(k2)

=
k

g2(k1)
· |V

′
1 |
n

·
(
k2

n

)
+

k

g1(k2)
·
(
|V2|
n

)2/3

≥ k

2 · g2(k)
· |V1|

n
+

k

g1(k)
·
(
1− |V1|

n

)
≥ k

g1(k)
,

using that g1(k) ≥ 2g2(k). Noting also that maxi∈[2] |Ui| ≥ k/2g1(k) ≥ k1/2 ≥ x0 this gives (B)

and completes the proof in Case 1.

Case 2: |A2| ≥ n/4.

In this case we apply Lemma 4.7, taking A2 as A, α := 4k/n and Θ = (M,λ). To check

that all the conditions apply, we note that log2 n ≤ n1/2 ≤ k ≤ n2/3 ≤ n/ log3 n and that

α = (4k/n) ≤ 4n−1/3 ≤ (λ log5 n)−1. Moreover, the set A2 satisfies

A2 ⊂
{
v ∈ V (G) : M log2 n ≤ T−1 · k3/2 ≤ dG(v) ≤ n/2 and |W∗(v)| ≤ αn

}
⊂ V (G).

Thus the conditions of Lemma 4.7 hold. Let U = {u1, . . . , ut} ⊂ A2 and V1, . . . , Vt, S ⊂ V (G)

be sets and let {di}i∈[t] be the values given by the Lemma, recalling that (ii) gives us t ≤ k.

We now show the Strategy, applied to some of the {Vi}i∈[t], holds. To see that (A) holds,

we take E = Bβ(U, S) to be a blended distribution on [0.1, 0.9]S. By Lemma 4.7 (iii) and (iv),

the hypothesis of Lemma 3.5 is true for D = (5M)−1 ·mini∈[t] dG(ui) ≥ (5TM)−1 · k3/2. Since

U is trivially 1-balanced to S, we take γ = 1 and β−1 = 10
√
k log k, so that for all vi ∈ Vi and

vj ∈ Vj with i ̸= j we have the following ‘bad’ control:

badS
E (vi, vj) ≤

2

βD
+ 2 ·max

{
dSG(ui), d

S
G(uj)

}
· exp

(
−0.045

γβ2|U |

)
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≤ 10TM · 10
√
k log k

k3/2
+ 2 · k

2

2
· exp

(
−4.5 · k log k

t

)
≤ 100TM

√
log k

k
+

1

k2
≤

200TM
√

log(k)

k

≤
exp

(
C2

2
(log k)2/3

)
k

≤ g′1(2k). (14)

This confirms (A) from the Strategy, provided that C2 is large enough.

Case 2(a): k ≥ |U | = t ≥ k/λ3.

Here we can proceed directly using (14). We have U ⊂ V (G) with |U | = k/λ3 > k/g1(k) and

a distribution D = E ×T on [0.1, 0.9]V (G), where T is the trivial distribution on [0, 1, 0.9]V (G)\S,

which by (14) satisfies badD(U) ≤
(|U |

2

)
· 200 · TM · (

√
log(k)/k) ≤ |U | · g1(|U |), using |U | ≤ k,

as required.

Case 2(b): |U | = t < k/λ3.

Here we continue with the Strategy, showing that (B) also holds. Consider the partition

[t] = I1 ∪ I2, where I1 = {i ∈ [t] : |Vi| ≥ n4/k6} and I2 = {i ∈ [t] : |Vi| < n4/k6}. As t < k, by

the ‘Furthermore’ statement in Lemma 4.7 (ii) we have∑
i∈I1

|Vi|+
∑
i∈I2

|Vi| ≥
n

1000λ log2 n
≥ 2

(
n

λ2

)
.

It follows from above that for some j ∈ {1, 2} we have
∑

i∈Ij |Vi| ≥ n/λ2. As |Ij| ≤ t ≤ k/λ3,

this gives maxi∈Ij |Vi| ≥ λ(n/k). Let us also observe4 that |Vi| ≤ |W∗(ui)| ≤ 4k ≤ n/λ6.

Claim: Suppose we have sets {Vi}i∈Ij with
∑

i∈Ij |Vi| ≥ n/λ2 and λ(n/k) ≤ maxi∈Ij |Vi| ≤ n/λ6.

Then the sets {Ui}i∈Ij given by the Strategy satisfy (B), i.e.∑
i∈Ij

|Ui| ≥ k/g1(k) and max
i∈Ij

|Ui| ≥ x0.

To see this, write ki := k(Vi) for all i ∈ Ij and let U0 =
⋃

i∈Ij Ui. Then |U0| =
∑

i∈Ij |Ui|. If
j = 1 then the sets Vi fall into (O1) for i ∈ J1. Then ki = k · (|Vi|/n)2/3 and hence

|U0| ≥
∑
i∈I1

ki
g1(ki)

=
∑
i∈I1

k

g1(ki)
·
(
|Vi|
n

)2/3

=
k

g1(k)
·
∑
i∈I1

|Vi|
n

·
(

n

|Vi|

)1/3

4While |Vi| ≤ n/λ6 is a much weaker than our known bound of |Vi| ≤ 4k, our current analysis will also apply

Case 3 below, where only a weaker bound can be achieved.
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≥ k

g1(k)
·
(∑

i∈I1

|Vi|
n

)
·
(

n

n/λ6

)1/3

≥ k

g1(k)
· 1

λ2
· λ2 =

k

g1(k)
.

Besides, taking i ∈ Ij such that |Vi| ≥ λ(n/k), we have ki ≥ k(|Vi|/n)2/3 ≥ k1/3. Therefore

|Ui| ≥ ki/g1(ki) ≥ k1/6 ≥ x0.

If j = 2 instead then the sets Vi fall into (O2) for i ∈ J2. Then ki = |Vi|(k3/n2) and so

|U0| ≥
∑
i∈I2

ki
g2(ki)

=
∑
i∈I2

k

g2(ki)
·
(
|Vi|
n

)
·
(
k2

n

)
≥ k

g2(k)
·
(∑

i∈I2

|Vi|
n

)
· 1 ≥ k

λ2 · g2(k)
.

Also, taking i ∈ Ij such that |Vi| ≥ λ(n/k), we have ki ≥ |Vi|(k3/n2) ≥ λ(k2/n) ≥ λ. Therefore

|Ui| ≥ ki/g1(ki) ≥ λ1/2 ≥ log k ≥ x0.

By combining these two bounds we obtain, as required, that∑
i∈Ij

|Ui| ≥ min

(
k

g1(k)
,

k

λ2 · g2(k)

)
=

k

g1(k)
.

Therefore (B) holds for {Ui}i∈Ij , completing the proof of the Claim. Since (A) also holds,

this means that we can apply the Strategy for the set U0, thus completing Case 2.

Case 3: |A3| ≥ n/4.

This case has some similarities with the approach from Case 2 above, though there are also

several new elements and the analysis is more subtle at certain points.

To begin, note that G[A3] is an induced subgraph of G with |G[A3]| ≥ n/4 and, by definition

of A3, we have ∆(G[A3]) ≤ k3/2/T . We apply Theorem 2.2 to G[A3] to find an induced subgraph

H of G[A3] such that m := |H| ≥ |A3|/30 log n ≥ n/120 log n with the property that there is D

such that D ≤ dG(v) ≤ 5D log n for all v ∈ V (H). Since hom(H) ≤ hom(G) ≤ n2/k3, we note

that we must have D ≥ |H| · (n2/k3 + 1)−1 ≥ k3 · (250n log n)−1 ≥ k1/2 by Turán’s theorem.

Clearly also D ≤ ∆(H) ≤ T−1 · k3/2 < m/2.

We now set Θ = (M,λ) and consider the Θ-clusters, this time in H. We first show that

Lemma 4.7 applies for A = V (H) and α := (Tm)−1 · 2k3/2. We have log2m ≤ k ≤ m log−3m

since |A| = m ≥ 2n/ log2 n, and α = 2k3/2/(Tm) ≤ k3/2 log2 n/(Tn) ≤ log2 n/T ≤ (λ log5m)−1.

Given v ∈ V (H), using Lemma 4.2 (iii) we have T
V (H)
Θ (v) ≤ logλ(n) < log4M − 1, and so by

Lemma 4.3 we have |W∗(v)| ≤ 2 ·∆(H) ≤ 2k3/2/T < αm. To check the remaining condition,

observe that M log2m ≤ k1/2 ≤ D ≤ dH(v) ≤ ∆(H) < m/2, hence:

A ⊂
{
v ∈ V (H) : M log2m ≤ dH(v) ≤ m/2 and

∣∣W∗(v)
∣∣ ≤ αm

}
⊂ V (H).

Thus Lemma 4.7 applies with these parameters to give sets U, V1, . . . , Vt, S and values {di}i∈[t]
which satisfy conditions (i)-(v) (with n replaced by m in these statements). As advised by (v),

we also let γ := log5m ·max(∆(G) ·m−1, t−1) ≤ log8 n ·max(D/n, 1/t).
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We once again show the Strategy holds when applied to some of the {Vi}i∈[t]. To see that

(A) holds, recall from Lemma 4.7 (v) that U is γ-balanced to S. Set β−1 = 10(γ|U | log4 k)1/2
and take E = Bβ(U, S) to be the blended distribution on [0.1, 0.9]S. By recalling the definition

of the Θ-cluster, Lemma 3.5 for D/M gives that for all vi ∈ Vi and vj ∈ Vj with i ̸= j we have

badS
E (vi, vj) ≤

2M

βD
+ 2 · (5D log n) · exp

(
−0.045

γβ2|U |

)

≤
20 ·M

√
γ|U | log4 k
D

+
10 · k3/2 log n

T
· exp

(
− 4.5 · log4 k

)
≤ 20M log6 k

D
·max

(√
D|U |
n

, 1

)
+ k−3 ≤ 42M log7 k

k
≤ g′1(2k). (15)

The final inequality above holds since D ≥ k3/(n log2 n) ≥ k3/(4n log2 k), which implies that√
|U |/Dn ≤

√
4 log2 k · k−2 = 2 log k/k. Thus part (A) of the Strategy holds.

Case 3(a): k ≥ |U | = t ≥ k/λ3.

As before, in this case we proceed directly since |U | = k/λ3 ≥ k/g1(k) and there is already a

distribution D = E × T on [0.1, 0.9]V (G), where T is the trivial distribution on [0, 1, 0.9]V (G)\S.

From (15) we deduce that badD(U) ≤
(|U |

2

)
· 42Mk−1 log7 k ≤ |U | · g1(|U |), using |U | = t ≤ k,

as required.

Case 3(b): |U | = t < k/λ3.

Here we continue with the Strategy, verifying that (B) holds. Let [t] = I1∪I2 denote again

the partition with I1 = {i ∈ [t] : |Vi| ≥ n4/k6} and I2 = {i ∈ [t] : |Vi| < n4/k6}. As t < k, by

Lemma 4.7 (ii) we obtain that∑
i∈I1

|Vi|+
∑
i∈I2

|Vi| ≥
m

103λ log2m
≥ n

103λ log4 n
≥ 2

(
n

λ2

)
.

By using the pigeonhole principle, there is j ∈ {1, 2} such that∑
i∈Ij

|Vi| ≥
n

λ2
.

Moreover, λ(n/k) ≤
∑

i∈Ij |Vi|/t ≤ maxi∈Ij |Vi| ≤ αn ≤ k3/2 log2 n/T ≤ n/λ6. It follows that

the Claim from Case 2 above can be applied to the current sets {Vi}i∈Ij as well, so (B) holds.

Therefore the Strategy once again applies, completing the proof of Case 3.

We finish the proof by noting that our three cases exhaust all possibilities, since otherwise

|A| = |A1|+ |A2|+ |A3| < 0+ (n/4)+ (n/4) = n/2, contrary to the assumption that |A| ≥ n/2.

Therefore one of these cases must apply and so the theorem is proved.
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1987, pp. 49–56. isbn: 978-0-8176-4842-8. doi: 10.1007/978-0-8176-4842-8_3. url:

https://doi.org/10.1007/978-0-8176-4842-8_3.
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